Tech Tip: Shewhart Charts

gaussian peakShewhart Charts (invented by Walter A. Shewhart c1920s) are statistical process control charts used to determine whether a manufacturing process (e.g. in the modern day a laboratory generating analytical results) is working predictably.

They are based on a Gaussian or Normal distribution of data.

Tech Tip: Miniaturisation in GC laboratories – Part VIII

Method miniaturisation is the squeezing of as many instrumental and analytical parameters as possible to optimise efficiency. Variables that can be examined include extraction solvent, extraction technique, injection onto the column, separation on column, quantification via the detector and finally the cycle time of one analytical run. As we strive to make the method more robust we should improve quality, obtain an equivalent if not better Limit of Detection (LOD) and deliver the result more quickly and hence more cheaply.

LIMS

Tech Tip: Miniaturisation in GC laboratories – Part VII

Method miniaturisation is the squeezing of as many instrumental and analytical parameters as possible to optimise efficiency. Variables that can be examined include extraction solvent, extraction technique, injection onto the column, separation on column, quantification via the detector and finally the cycle time of one analytical run. Further improvements can then come from choice of consumables, process improvements and lab re-arrangements. As we strive to make the method more robust we should improve quality, obtain an equivalent if not better Limit of Detection (LOD) and deliver the result more quickly and hence more cheaply.

Choice of consumables, Process improvements and Lab re-arrangements

Tech Tip: Miniaturisation in GC laboratories – Part VI

Method miniaturisation is the squeezing of as many instrumental and analytical parameters as possible to optimise efficiency. Variables that can be examined include extraction solvent, extraction technique, injection onto the column, separation on column, quantification via the detector and finally the cycle time of one analytical run. As we strive to make the method more robust we should improve quality, obtain an equivalent if not better Limit of Detection (LOD) and deliver the result more quickly and hence more cheaply.

Cycle time of one analytical run

Tech Tip: Miniaturisation in GC laboratories – Part V

Method miniaturisation is the squeezing of as many instrumental and analytical parameters as possible to optimise efficiency. Variables that can be examined include extraction solvent, extraction technique, injection onto the column, separation on column, quantification via the detector and finally the cycle time of one analytical run. As we strive to make the method more robust we should improve quality, obtain an equivalent if not better Limit of Detection (LOD) and deliver the result more quickly and hence more cheaply.

Quantification via the Detector

Tech Tip: Miniaturisation in GC laboratories – Part IV

Method miniaturisation is the squeezing of as many instrumental and analytical parameters as possible to optimise efficiency. Variables that can be examined include extraction solvent, extraction technique, injection onto the column, separation on column, quantification via the detector and finally the cycle time of one analytical run. As we strive to make the method more robust we should improve quality, obtain an equivalent if not better Limit of Detection (LOD) and deliver the result more quickly and hence more cheaply.

Separation on column

Tech Tip: Miniaturisation in GC laboratories – Part III

Method miniaturisation is the squeezing of as many instrumental and analytical parameters as possible to optimise efficiency. Variables that can be examined include extraction solvent, extraction technique, injection onto the column, separation on column, quantification via the detector and finally the cycle time of one analytical run. As we strive to make the method more robust we should improve quality, obtain an equivalent if not better Limit of Detection (LOD) and deliver the result more quickly and hence more cheaply.

Injection onto the column

Tech Tip: Miniaturisation in GC laboratories – Part II

Method miniaturisation is the squeezing of as many instrumental and analytical parameters as possible to optimise efficiency. Variables that can be examined include extraction solvent, extraction technique, injection onto the column, separation on column, quantification via the detector and finally the cycle time of one analytical run. As we strive to make the method more robust we should improve quality, obtain an equivalent if not better Limit of Detection (LOD) and deliver the result more quickly and hence more cheaply.

The extraction technique

Tech Tip: Miniaturisation in GC laboratories – Part I

Method miniaturisation is the squeezing of as many instrumental and analytical parameters as possible to optimise efficiency. Variables that can be examined include extraction solvent, extraction technique, injection onto the column, separation on column, quantification via the detector and finally the cycle time of one analytical run. As we strive to make the method more robust we should improve quality, obtain an equivalent if not better Limit of Detection (LOD) and deliver the result more quickly and hence more cheaply.

The extraction solvent

Tech Tip: Use your GC or GC-MS instrument to its full capabilities

Would you believe that only a small percentage of GC and GC-MS instruments are used to their full capabilities? This is the same for the data analysis systems.

In today's global climate of recession we really need to be making the most of what we have with optimised methods (both the analysis and the data processing) for high throughput and accurate analyses.

Ways to improve your methodologies:

Pages